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I Diffusion Models
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Introduction

I Diffusion Models
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Sauer, A, Lorenz, D., Blattmann, A., & Rombach, R. (2023). Adversarial Diffusion Distillation. arXiv preprint arXiv:2311.17042.
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Consistency Models

I Consistency Models

« ICML 2023, OpenAl

« 20234 128 15¢ 7|& 127%] o1&

Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models. arXiv preprint arXiv:2303.01469.

Consistency Models

Yang Song' Prafulla Dhariwal' Mark Chen' Ilya Sutskever '

Abstract

Diffusion models have significantly advanced the
fields of image, audio, and video generation, but
they depend on an iterative sampling process that
causes slow generation. To overcome this limita-
tion, we propose consistency models, a new fam-
ily of models that generate high quality samples
by directly mapping noise to data. They support
fast one-step generation by design, while still al-
lowing multistep sampling to trade compute for
sample quality. They also support zero-shot data
editing, such as image inpainting, colorization,
and super-resolution, without requiring explicit
training on these tasks. Consistency models can
be trained either by distilling pre-trained diffu-
sion models, or as standalone generative models
altogether. Through extensive experiments, we
demonstrate that they outperform existing distilla-
tion techniques for diffusion models in one- and
few-step sampling, achieving the new state-of-
the-art FID of 3.55 on CIFAR-10 and 6.20 on
ImageNet 64 x 64 for one-step generation. When
trained in isolation, consistency models become a
new family of generative models that can outper-
form existing one-step, non-adversarial generative
models on standard benchmarks such as CIFAR-
10, ImageNet 64 x 64 and LSUN 256 x 256.

Data Noise

Figure 1: Given a that smoothly
converts data to noise, we learn to map any point (e.g., X;,
Xy, and x7) on the ODE trajectory to its origin (e.g., Xg)
for generative modeling. Models of these mappings are
called consistency models, as their outputs are trained to be
consistent for points on the same trajectory.

2022bsa). A key feature of diffusion models is the iterative
sampling process which progressively removes noise from
random initial vectors. This iterative process provides a
flexible trade-off of compute and sample quality, as using
extra compute for more iterations usually yields samples
of better quality. It is also the crux of many zero-shot data
editing capabilities of diffusion models, enabling them to
solve challenging inverse problems ranging from image
inpainting, colorization, stroke-guided image editing, to
Computed Tomography and Magnetic Resonance Imaging
(Song & Ermon, 2019; Song et al., 2021; 2022; 2023; Kawar
et al., 2021; 2022; Chung et al., 2023; Meng et al., 2021).




Consistency Models

I Preliminary: DDPM

- Forward process: data — noise / '£O|= A =0 a2t LO|= F7}

« Reverse process: noise — data / Z2= Sl 0|= XA

Forward
Xt+1 xXT
Po(X) = Paata(x) Pe-1(x) Pt (x) Pe+1(x) pr(x) = N(0,1)
Reverse

Diffusion Model

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.
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Consistency Models

I Preliminary : Score-SDE

 Forward SDE: data — noise

« Reverse SDE: noise — data dx = u(x, t)dt + o(t)dw
Forward
Xt+1 xXT

SN
- < <
— o 7

Po(X) = Paata(®x)  Dr-1(x) P (x) Pe+1(x)  pr(x) =N(0,1)

Reverse
dx = [u(x, t) — a(t)*V,logp,(x)]dt + o(t)dw Diffusion Mode!

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020, October). Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations.
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Consistency Models

I Preliminary : Score-SDE

« Probability Flow ODE (PF ODE): Forward SDE2} 523t =& EXZE %+ ODE

Bl

Forward SDE PF ODE

1
Forward dx = u(x, t)dt + a(t)dw dx = [H(X; t) — > a(t)zvxlogpt(x)] dt

Reverse 1
dx = [u(x,t) — a(t)?V,logp,(x)]dt + o(t)dw dx = [,u(x, t) — Ea(t)zvxlogpt(x)] dt

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020, October). Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations.
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Consistency Models

I Consistency Models

« Consistency function: & 2%+ PF ODE trajectory0f| IX|St= x, & Y& 2AZ2 I xy E return
- Self-consistency: 212|2| x, Of CHSHAM st EHUS 7FHOF (fy(xe, t) = fo(xs,t') for all ¢,t" € [0,T])

« Boundary condition: x,& &3}™ identity functionO| &[O{OF SFE} (£, (xg, 0) = x,)

Data Noise

Consistency function .

0 (X7, t
f@ (xt! t) = Xo \xo, é o (X4, i%‘xt’ xt,t’ /

Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models. arXiv preprint arXiv:2303.01469.
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Consistency Models

I Consistency Models

*  Fg(x;,t): deep neural network
Cski'p(t): Cskip(o) = 1% DI_|-_7_.I<_'<'5|_E Dl‘E‘ 7|'%_§' _%I'—)F

Cout (1): Cone(0) = 02 THSIE O 7tsT &=

fo(xe, 1) = Copip () Xe + Cour (D) Fo (x¢, t)

‘t:o

Boundary condition  fg(x¢,t) = Cskip(0)xg + 0y (0)Fg(xy, t)
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Consistency Models

I Consistency Models — Consistency Distillation (CD)
« O|O0|X|0| forward diffusione 3l =0|= =7}
. x, ZEE St PF ODE 20| EX5t= x2S

« Self consistency= THESHZ| R8N fo(x, )2 fo(xe_q,t — 1) KHO| X[ A3}

fe (xt) t)
Forward o
Diffusion onsistency ,
Xt Xt-1 Model Diff |
N A
Diffusion Model fo(xi_q,t —1)

PF ODE  dx = [u(x 1) ~ 5 0(6)3W,logp, () s
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Consistency Models

I Consistency Models — Consistency Training (CT)

« AtHO| &&= diffusion model810]| consistency model & 7ts
- Hh=0o= of50| 7tsdt| 20 ME22 dEje 4R = = = U=

« CDIt CTO loss/7t sLet= Y (Theorem 2)

Forward
Diffusion

fo(xt, t)

Consistency Diff |
Model

fG (xt—li t— 1)
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Consistency Models

I Consistency Models - Sampling

«  One-step sampling: xTE f(x,t)0l 22 ™ O|0|X| ¥d 75

Consistency

\YifeYe =]

»  Multistep Sampling: '=O|=& 712t 0| CHA[ x0 44 -d

Forward
Diffusion

Consistency iS5 Consistency

Model “u NN Model
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Consistency Models

I Consistency Models - Experiments

« 7|Z= diffusion model CiH] £ H=

EDM
METHOD NFE(|) FID(}) IS(1) (35step)

Diffusion + Samplers

DDIM (Song et al., 2020) 50 4.67

DDIM (Song et al., 2020) 20 6.84

DDIM (Song et al., 2020) 10 8.23
DPM-solver-2 (Lu et al., 2022) 10 5.94
DPM-solver-fast (Lu et al., 2022) 10 4.70

3-DEIS (Zhang & Chen, 2022) 10 4.17
Diffusion + Distillation

Knowledge Distillation® (Luhman & Luhman, 2021) 1 9.36

DFNO* (Zheng et al., 2022) 1 4.12
1-Rectified Flow (+distill)* (Liu et al., 2022) 1 6.18 9.08
2-Rectified Flow (+distill)* (Liu et al., 2022) 1 4.85 9.01
3-Rectified Flow (+distill)* (Liu et al., 2022) 1 5.21 8.79
PD (Salimans & Ho, 2022) 1 8.34 8.69
CD 1 3.55 9.48
PD (Salimans & Ho, 2022) 2 5.58 9.05
CD 2 2.93 9.75
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Consistency Models

I Consistency Models - Experiments

« Zero-shot image editing= 7ts

|8
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“ o : < =
S ~ i

(c) Left: A stroke input provided by users. Right: Stroke-guided image generation.
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Consistency Models

I Latent Consistency Models

« Arxiv 108 6& &7l|, Tsinghua Univ.

« 20234 128 15¢ 7|F 93| 21 &

LATENT CONSISTENCY MODELS:
SYNTHESIZING HIGH-RESOLUTION IMAGES
WITH FEW-STEP INFERENCE

Simian Luo* Yiqin Tan” Longbo Huang’ Jian Lif Hang Zhao!

Institute for Interdisciplinary Information Sciences, Tsinghua University
{luosm22, tyg22}@mails.tsinghua.edu.cn
{longbohuang, 1ijian83, hangzhao}@tsinghua.edu.cn

ABSTRACT

Latent Diffusion models (LDMs) have achieved remarkable results in synthesiz-
ing high-resolution images. However, the iterative sampling process is compu-
tationally intensive and leads to slow generation. Inspired by Consistency Mod-
els (Song et al.| 2023), we propose Latent Consistency Models (L.LCMs), enabling
swift inference with minimal steps on any pre-trained LDMs, including Stable
Diffusion (Rombach et al.,[2022). Viewing the guided reverse diffusion process
as solving an augmented probability flow ODE (PF-ODE), LCMs are designed
to directly predict the solution of such ODE in latent space, mitigating the need
for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently
distilled from pre-trained classifier-free guided diffusion models, a high-quality
768 <768 2~4-step LCM takes only 32 A100 GPU hours for training. Further-
more, we introduce Latent Consistency Fine-tuning (LCF), a novel method that
is tailored for fine-tuning LCMs on customized image datasets. Evaluation on
the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-
art text-to-image generation performance with few-step inference. Project Page:
https://latent-consistency-models.github.io/

Luo, S, Tan, Y., Huang, L., Li, J., & Zhao, H. (2023). Latent consistency models: Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378.
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Consistency Models

I Diffusion to Latent Diffusion

- DBjAE O|O|X|E 4 E57] A diffusion IHE2 latent space O A X1
« Text-to-image Z2Z H

« Diffusion models — Latent diffusion models

512

512 512 —» Encoder 64 64 Decoder = 512

<Diffusion Models> <Latent Diffusion Models>
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Consistency Models

I Consistency to Latent Consistency
- DBjAE O|O|X|E 4 E57] A diffusion IHE2 latent space O A X1
« Text-to-image Z2Z H

» Consistency models — Latent consistency models

512 512 =—> Encoder 64 64 = Decoder = 512

512

Consistency
Model

Consistency
Model

<Consistency Models> <Latent Consistency Models>
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Consistency Models

I Latent Consistency Models

- Classifier-free Guidance (CFG): conditionO] 20{Zt outputdl & 7tEX|E £ O|0|X|2| EZ|E[E FA&st= HAY

é@ (Zt; W, C, t) — (1 + W)EG (Ztl C, t) — WeEg (Zti @, t)

Conditional Unconditional

CFG diffusion model  diffusion model

« Augmented PF ODE: CFG7} Z&tEl diffusion model2| Ot E2 223510 CD £l

dx g%
PFODE o= f(D7 + 55 o (20, 1)
CFG
dx 2(t
Augmented PF ODE — = f(t)z; + g ( )lé'g (z¢,w, ¢, t)
dt 20}
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Consistency Models

I Latent Consistency Models - Experiments

« 7|Z diffusion modelX & CFG scale0| [}2} O|O|X| &2|E|7} =0IK|= &

>

LCM 4step
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Hybrid Approach

I UFOGen: You Forward Once Large Scale Text-to-Image Generation via Diffusion GANs

« Arxiv 118 14¥ S7Y, Google

« 20234 128 15¢ 7|F 33| 21

UFOGen: You Forward Once Large Scale Text-to-Image Generation via
Diffusion GANs

Yanwu Xu*2! Yang Zhao!YlT Zhisheng Xiaol) Tingbo Houl!!

1

Google

{yanwuxu,yzhaoeric,zsxiao,tingbo}@gcogle.ccm

2 Department of Electrical Computer Engineering, Boston University

yanwuxu@bu.edu

Abstract

Text-to-image diffusion models have demonstrared re-
markable capabilities in transforming text prompts into co-
herent images, yet the computational cost of the multi-step
inference remains a persistent challenge. To address this
issue, we present UFOGen, a novel generative model de-
signed for ultra-fast, one-step rext-to-image generation. In
contrast to conventional approaches that focus on improv-
ing samplers or employing distillation technigues for diffu-
sion models, UFOGen adopts a hybrid methodology, inte-
graring diffusion models with a GAN objective. Leveraging
a newly introduced diffusion-GAN objective and initializa-
tion with pre-trained diffusion models, UFOGen excels in
efficiently generating high-quality images conditioned on
textual descriptions in a single step. Bevond traditional
text-to-image generation, UFOGen showcases versatility in
applications. Notably, UFOGen stands among the pioneer-
ing models enabling one-step text-to-image generation and
diverse downstream tasks, presenting a significant advance-
ment in the landscape of efficient generative models.

Xu, Y., Zhao, Y., Xiao, Z., & Hou, T. (2023). Ufogen: You forward once large scale text-to-image generation via diffusion gans. arXiv preprint arXiv:2311.09257.

ing [5, 13, 65]. Yet, despite their impressive generative
quality and wide-ranging utility, diffusion models have a
notable limitation: they rely on iterative denoising to gen-
erate final samples, which leads to slow generation speeds.
The slow inference and the consequential computational de-
mands of large-scale diffusion models pose significant im-
pediments to their deployment.

In the seminal work by Song et al. [56], it was revealed
that sampling from a diffusion model is equivalent to solv-
ing the probability flow ordinary differential equation (PF-
ODE) associated with the diffusion process. Presently, the
majority of research aimed at enhancing the sampling effi-
ciency of diffusion models centers on the ODE formulation.
One line of work seeks to advance numerical solvers for the
PF-ODE, with the intention of enabling the solution of the
ODE with greater discretization size, ultimately| leading to
fewer requisite sampling steps [2, 35, 36, 55]. However, the
inherent trade-off between step size and accuracy still ex-
ists. Given the highly non-linear and complicated trajectory
of the PF-ODE, it would be extremely difficult to reduce
the number of required sampling steps to a minimal level.

24



Hybrid Approach

I Preliminary: DDGAN

2
oA

* Reverse process2| stepO| X[ H GaussianO|2t= 7+%

 Adversarial loss& Z-&% step AFO|=7} HA {2 —E—E% EPS

q(zo) q(x:1) qlz) al(axy)
Marginal Diffused
Data Distributions
F-..‘___ vf.. 'F-.. 1*— -

éé

a(xdTs=X) qm;l:l:; X) Q$2|$5 ) g(@sles=X) gqlzilz=X)

S

True Denoising
Distributions

T

Daav(q(xe—11xe)||po (xi—11x¢))

Xiao, Z., Kreis, K., & Vahdat, A. (2021, October). Tackling the Generative Learning Trilemma with Denoising Diffusion GANs. In International Conference on Learning Representations.
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Hybrid Approach

I Preliminary: DDGAN
* x.q1: CIOIE{O M RO{Tl L=O]= O|DO|X|
: Generator”/| ‘d-gd2t = 0[= O|O|X]|

« Discriminator TRt 7tRt 722 — Generator(pg (x;—_1|x.)) 7t q(x,_1|x) 2t =2 StS

Forward diffusion

q(x; . 1 | o)

Real / Fake?
Dadv (q (xt_l |Xt) | | ) calfake D(,. 1, @y, 1)

Posterior sampling

3uruonIpuo))

Xiao, Z., Kreis, K., & Vahdat, A. (2021, October). Tackling the Generative Learning Trilemma with Denoising Diffusion GANs. In International Conference on Learning Representations.
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Hybrid Approach

I Preliminary: SIDDMs

- DDGANZQ| gt& =2 d 2 7HM5H7| A A2 loss functiong =Y

DDGAN Daav(q(xe—11xe) | 1pe (xt—11x¢))

l

SIDDMs Dgav(q(xe—1)] |P9 (x£—1)) + Ak KL(po (xelxe— ) |1q (xe1x¢—-1))

Xu, Y., Gong, M., Xie, S., Wei, W., Grundmann, M., & Hou, T. (2023). Semi-Implicit Denoising Diffusion Models (SIDDMs). arXiv preprint arXiv:2306.12511.
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Hybrid Approach

I UFOGen - Loss

« Term1: q(xe—1) 2t pe(x¢—1) align — q(x) 1t pg(xp) align St

« Term2: x;_1,x{_; MO|F E0|= A2 xp,x) MO|E SO0|=AY =L (Appendlx A2.2)
- HYHCE yx,,x, NMO|F E0|= A0 T2 d55 £¢

Dgav(q(xt-1)| |P0 (x£—1)) + Ak KL(po (xelxe— 1) |1q(xe|xe—1))

Generator/t H|O|E &X2} align 1
O|0|X| reconstruction

(1- ,Bt)&t—lllx(’) — X ”2

2p¢
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Hybrid Approach

B UroGen - Training

« Generator2} discriminator= AtM g5 =l diffusion model| A B2 E & Al

Forward Forward
Diffusion Diffusion

Real / Fake

(1 = B ae—1llxg — x0 I
2[¢

Generator?} H|O|E &2} align O|O|X| reconstruction

Dadv(CI(xt—1)||P9 (x£—1)) + A KL(po Ocelxi— )| 1q (x| xe—1)) =>
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Hybrid Approach

I UFOGen - Experiments

« 1step generationO| M= 2ot 5= E¢

SD (50 steps)

InstaFlow (1 step)

LCM (2 steps)

LCM (4 steps)

UFOGen (1 step)

/JL:

Cute small corgi sitting in a movie theater eating popcorn, unreal engine.

g N

A Pikachu with an angry expression and red eyes, with lightning around it, hyper realistic style.
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Hybrid Approach

I UFOGen - Experiments

» Image-to-lImage: input O|D[X|0| =O0|= F=7} = Generator

- Controllable generation: T2l-adapterE &3l 7} condition

Oil painting of mountain Chinese landscape paini-

and lake. ing.

Tree with aurumn leaves. A winter scene.

Image-to-lmage

O x| &8
NS
oo

| RO
A cute dog, sinting on the

A cure black and whire

Canny edge

o grass, watercolor paint-
dog, siming on the beach. P

ared sport car on snow-

Depth map field

Vintage photo of a rusty car.

Controllable generation
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Conclusion

IAcceIerating Diffusion Models

« Consistency Models
v Consistency Models

> x5 Y B0} x, E 0ZF 5= consistency model H| 2t

» CD: diffusion model2 &9l st5 / CT: AFR™E gio| ot

i

v' Latent Consistency Models

> Consistency model2 latent spaceOf Al ZIEHEto 2 )
> Consistency model=

* Hybrid Approach
v UFOGen

2 Aoff = O|OX] &
= Text-to-image L& = =%

= — O

- Reverse process2| step AtO| =7} 7 & [ Gaussian £XE 7tH0| 7HZE (DDGAN)
« Generator?} OOl X2 E F7H

= T O
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